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Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the

inability to observe locations away from the heart surfaces and the restriction of observations to

only one or two state variables have made understanding arrhythmia mechanisms challenging.

Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations

could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical

waves including unobserved variables in one and three spatial dimensions. However, real cardiac

tissue is unlikely to be described accurately by mathematical models because of errors in model

formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of

electrophysiological properties in the heart. Here, we extend our previous work to assess how

model error affects the accuracy of cardiac state estimates achieved using data assimilation with

the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant

alternans characterized by significant wavelength oscillations. We demonstrate that data assimila-

tion can provide high-quality estimates under a wide range of model error conditions, ranging from

varying one or more parameter values to using an entirely different model to generate the truth

state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state

estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using

a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find

data assimilation to be a robust approach for reconstructing complex cardiac electrical states corre-

sponding to arrhythmias even in the presence of model error. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999603]

Both experimental and simulated cardiac tissue readily

supports scroll and spiral waves,
1–6

which rotate at fre-

quencies higher than the heart’s natural pacemaker and

correspond to arrhythmic states. Lower-dimensional set-

tings can support other complex dynamics, such as dis-

cordant alternans on ring geometries.7–9 However,

reproducing these dynamics in a quantitative wave using

a numerical model presents a number of challenges.

Observations from experimental contexts typically are

coarser in space and time than the resolution needed to

resolve the dynamics numerically and generally can

include observations only of voltage and perhaps intracel-

lular calcium concentration, rather than the full comple-

ment of variables present in a model. Observations also

may be restricted in other ways; for example, observa-

tions typically are limited to the surfaces of the heart

when using the popular technique of optical map-

ping.10–12 Providing high-resolution, quantitatively accu-

rate state reconstructions of the experiments may

provide a clearer picture of the spatiotemporal dynamics

underlying arrhythmias and perhaps lead to new mecha-

nistic insights as well as potential improvements in model

accuracy.

I. INTRODUCTION

Many arrhythmic states in the heart are characterized by

the abnormal propagation of electrical waves. To provide

better treatments, it is important to improve our understand-

ing of the dynamics of these waves. Mathematical modeling

can be a useful complement to traditional biological experi-

ments by offering increased access to system variables and

by providing additional levels of control over conditions.

However, efforts toward developing reliable models that

match experiments quantitatively are hindered in various

ways, including limited locations for experimental record-

ings and restrictions to observe only one or a small number

of variables, incomplete or inaccurate mathematical model

formulation leading to a lack of quantitative agreement with

experiments, and biological heterogeneity and variability

that introduce further complications.

Recently13 we showed that data assimilation is a promis-

ing technique for reconstructing both observed and unob-

served variables in a time series of cardiac electrical wave

states from spatiotemporally coarse observations. Data

assimilation arose in the weather-forecasting community as a

way to use observations whenever and wherever they are

available to improve predictions from imperfect and often

sensitive numerical models. Essentially, the model is run

until observational data, which are generally sparse in time

as well as in space and are restricted to a subset of the model

variables, are available, at which time they are used to
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improve the model prediction. The approach can be used

both for forecasting future states and for detailed reconstruc-

tion of past states, which is how we use it. Most data-

assimilation methods, including ours, rely on the Kalman fil-

ter, which is a technique for producing state estimates from

noisy data. We adopted an approach based on the Kalman fil-

ter called the Local Ensemble Transform Kalman Filter

(LETKF).14 One of the main features of this method is that

an ensemble of states is used to characterize uncertainty of

the numerical prediction model, which affects how much

weight the algorithm places on the observations in compari-

son with the numerical prediction when updating the state

estimate at times when observational data are available.

The LETKF has been shown to be effective for atmo-

spheric15–19 and oceanographic20 applications. Within set-

tings more closely related to the heart, Kalman filters have

been used for state estimation in single cardiac cells21 and

one-dimensional fibers.22 Berg et al.23 considered a type of

data assimilation in a setting more similar to our previous

and present work by studying under what conditions a two-

dimensional system with spiral-wave dynamics could be

used to drive and synchronize a paired system through feed-

back. Data assimilation also has been used in other biologi-

cal contexts to reconstruct the dynamics of networks of

neurons during seizures,24 to identify effective connections

between spinal cord neurons in culture,25 and to improve

numerical model forecasts of the spread of brain cancer.26

It is clear that the accuracy of the state estimates data

assimilation provided will be limited by how well the numer-

ical model used within the process represents the true

dynamics of the system. We anticipate a number of possible

problems that can arise: inaccurate (or highly sensitive)

model parameter values, missing or incorrect model terms,

differences among experimental preparations, and intrinsic

spatial heterogeneity of electrophysiological properties, to

name a few. In our previous work,13 we considered a single

model-error case by using synthetic observations generated

from a model to show that changing one parameter value

between the model used for the truth and the model used for

the reconstruction could be managed successfully by the

LETKF.

This paper extends our previous work to consider a

much broader range of cases of model error. First, we con-

sider cases when the same model is used to generate the

truth as is used in the LETKF and a single sensitive parame-

ter is varied over a broad range of values. Next, we vary the

values of multiple parameters that cause significant dynam-

ics changes within the model used to generate the truth,

which remains the same as that used in the LETKF. Then,

we use a different numerical model to generate the truth

and assess how well the LETKF can reconstruct truth states

with different dynamics. Finally, we study a preliminary

case in which the truth model includes spatial heterogeneity

in a single parameter. We find that data assimilation can be

used with high accuracy to construct high-resolution esti-

mates of observed and unobserved variables under a broad

range of conditions, including significant differences in

dynamics between the truth state and the intrinsic behavior

of the model used within the LETKF to generate the

reconstruction.

II. METHODS

A. Data assimilation

We adhere closely to the data-assimilation methodology

outlined in our previous work,13 so we will provide only a

brief description here. Essentially, data-assimilation schemes

are used to generate improved state estimates for a system by

combining observational data with numerical model predic-

tions, which in turn have been informed by older observa-

tions. In this case, we form a state reconstruction; data

assimilation also can be used to develop a prediction. We

use the Local Ensemble Transform Kalman Filter

(LETKF),14 which is a nonlinear extension to the Kalman fil-

ter. Observational data (with noise) are used to iteratively

update a state estimate generated from a numerical model

(we will refer to this initial estimate as the model prediction);

here, we use a fixed assimilation interval. An improved state

estimate is generated by minimizing a cost function that

includes terms representing how close the improved estimate

is to the available observations (which may be sparse in

space and which may not include all state variables in the

numerical model) and to the prediction from the numerical

model. The algorithm weighs these terms dynamically by

their covariances.

Rather than forming and inverting a large covariance

matrix, the LETKF uses an ensemble of states to characterize

uncertainty in the numerical prediction. The basic idea is

that the more numerical-model solutions starting from slight

perturbations of initial conditions (representing a state esti-

mate) diverge by the time additional observations are avail-

able for assimilation, the more strongly the algorithm weighs

the observations during assimilation. A single initial predic-

tion from the numerical model is calculated at the end of

each assimilation interval by averaging the solutions of the

individual ensemble members obtained by running the

numerical model for each perturbed initial condition over the

time interval. The LETKF then combines the observations,

numerical prediction, observation covariance, and ensemble

sample covariance to produce an updated state estimate and

a set of perturbations used to form the new ensemble mem-

bers, and the process is repeated. To reduce the risk of spuri-

ous correlations over long distances, the LETKF is localized

in the sense that only observations within a prescribed dis-

tance are considered when assimilating data for each grid

point. More details and key equations are given in the

Appendixes A and B and in Ref. 13.

In our case, we use an ensemble with 20 members,

which was shown previously13 to be sufficient for character-

izing uncertainty in our application. Each ensemble member

is initialized to a randomly selected state of the numerical

model from a 1000-ms spinup run. For numerical prediction,

we use the Fenton-Karma model, as discussed below. Within

the model, the time step is set to 0.05 ms and the spatial reso-

lution is 0.025 cm. We set the spatial localization parameter

value to 0.05 cm, so that approximately six observations are

used to update the state estimate for each grid point.
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To understand the performance of our algorithm in the

presence of model error, we create synthetic observations

from truth states generated from models. In all cases, truth

states are generated as propagating waves on one-

dimensional ring geometries 13.5 cm long. To create obser-

vations, we first subsample the truth voltage variable in

space and time to a resolution of 0.075 cm in space and 5 ms

in time (every 3 spatial grid points and 100 time steps of the

numerical model). These values are consistent with resolu-

tions available using optical mapping.27 Then, we add

Gaussian error with a mean of zero and standard deviation of

0.05. The resulting data are the observations used by the

algorithm to reconstruct the truth state.

Because of the relatively small number of ensemble

members used, ensemble Kalman filters frequently underesti-

mate the covariance associated with the numerical prediction.

A common strategy to compensate for this underestimation is

the use of multiplicative inflation,14,16,18 which involves sim-

ply multiplying the covariance by a fixed constant factor m.

When no multiplicative inflation is used, m ¼ 1. In the cases

studied here, we use m ¼ 1:2 unless noted otherwise. In most

cases, we also employ an additional strategy, additive infla-

tion,18,19 which can modify the subspace spanned by the

ensemble members by adding a vector to each ensemble

member. Additive inflation is helpful for providing new direc-

tions to the ensemble when the error and ensemble subspaces

do not coincide. Following our previous work,13 we use addi-

tive inflation vectors obtained as the difference between

model states obtained in the spinup that are 5 ms (the assimila-

tion interval) apart, scaled by a factor a ¼ 0:05 unless noted

otherwise. When additive inflation is not used, a ¼ 0. More

details are given in the Appendixes A and B.

B. Cardiac models

We use two different cardiac models in this work. The

Fenton-Karma (FK) model6,28 is always the numerical pre-

diction model employed by the LETKF and in many cases

also is used to generate the truth states we aim to recover

through data assimilation. We use the Fenton-Karma model

because it has been shown previously to be an efficient and

flexible model that can reproduce many types of dynam-

ics.6,29–32 Thus, we expect it to be useful for state reconstruc-

tion in a wide variety of settings.

The model consists of three variables, u, v, and w, and

three currents (fast inward, slow inward, and slow outward).

Here, the variable u represents the voltage, v is an inactiva-

tion variable for the fast inward current, and w is an inactiva-

tion variable for the slow inward current. A total of 13

parameters are used in the model. The model equations and

parameter values used are given in Appendixes A and B.

Specific parameters considered here include sd , which repre-

sents excitability and affects wave speed and alternans mag-

nitude; sr , which is the magnitude of the early repolarizing

current and affects wavelength and alternans magnitude; and

ssi, which scales the slow inward current and also affects

wavelength and alternans magnitude.

The numerical prediction model within the LETKF

always uses the parameterization of the model tuned to

match action potential durations, but not action potential

shapes, of the Beeler-Reuter (BR) model,33 given as Set 3 in

Ref. 6 and referred to here as the BR parameter set. We use

resolutions of 0.025 cm and 0.05 ms in space and time,

respectively. The geometry is a one-dimensional ring that is

13.5 cm long. For the BR parameter set, in this ring size the

model generates a discordant alternans state characterized by

pronounced oscillations in wavelength.

Truth states in some cases, as noted, are generated using

the BR model,33 which in its default configuration also

results in discordant alternans for the ring size of 13.5 cm

that we use in all cases. We also varied the parameter gNa,

which is the conductance of the sodium current. Increased

gNa leads to faster wave propagation and enhanced alternans;

decreased gNa slows propagation and reduces the magnitude

of alternans.

C. Error metrics

To quantify the accuracy of the state estimates pro-

duced, we use three different error measurements. First, we

use the standard root mean square (RMS) error, which is

obtained by summing the squares of the pointwise differ-

ences between two vectors, taking their mean by dividing by

the length of the vectors, and then taking the square root. We

use RMS to compare the reconstructed voltage with the true

voltage. The reconstructed voltage ideally will be within the

observation error of the truth, and reduction of the RMS

error over time is positive. Because RMS error in the present

case is sensitive to differences in waveforms, which can vary

significantly between different model parameterizations or

between different models, we also consider in some cases

what we call a binary error metric, which is the fraction of

all estimated values of u that are incorrectly above or below

a threshold of 0.1 compared to the truth. This metric is sensi-

tive along the wave fronts and backs but is more forgiving of

differences in waveforms within the interior of the wave.

Finally, we also measure the wavelength over time using a

threshold of 0.15. We consider both the average wavelength

measured across all times and the extreme wavelength values

reached in the second half of the simulation, as noted.

III. RESULTS

A. No model error

As a first demonstration of the data-assimilation algo-

rithm and our setup, we consider a case with no model error.

Figure 1 shows a space-time plot of the truth (upper left),

which is a simulation of discordant alternans on a ring geome-

try using the FK model with the BR parameter set, along with

representative wave profiles at different times (upper right).

Observations are generated from a subsampling of the truth

with the addition of Gaussian noise and random model states

are used to initiate the 20 ensemble members, as described in

the Methods. For this first case, no inflation is used (m ¼ 1,

a ¼ 0). The estimate achieved by the LETKF is shown in the

lower left of Fig. 1. Early on, the reconstructed state estimate

has trouble achieving resting membrane potential (lighter blue

color following some waves). However, within two rotations

093911-3 LaVigne et al. Chaos 27, 093911 (2017)



around the ring, which roughly corresponds to one discordant

alternans period, the RMS error has dropped below the level

of the added Gaussian noise (standard deviation of 0.05,

gray), as seen in the RMS error plot (lower right, red).

It is important to keep in mind that the initialization of

the model to random states introduces a stochastic component

to the LETKF that can affect its performance somewhat. The

blue, green, and cyan traces in the error plot in Fig. 1 show

how RMS error changes for three other initializations with all

model and algorithmic parameters unchanged. All drop below

the noise level within roughly the same amount of time, but

some reach higher levels of error than others. Figure 2 shows

the space-time plots of the estimates resulting from these repe-

titions along with space-time plots of the difference from the

truth. The top row shows the same estimate as Fig. 1 but

includes the difference plot as well. The main sources of error

are the inability to achieve resting membrane potential in

some regions early over the first several hundred ms, as evi-

denced by the red regions indicating an overestimate of the

voltage, and some early underestimation of the voltage along

the wave front, which could have led to a lag in the wave if

not for the correcting influence of the observations. Although

the RMS error overall drops below the level of noise in the

observations, the difference plot shows continued regions with

overestimation and underestimations of the voltage.

The different initializations with m ¼ 1 show similar

behavior but include some differences. Notably, in one case

there is a wave break that heals quickly, and in another there

is a pronounced wave break that temporarily leads to a bidi-

rectionally propagating wave. All of the simulations share

early difficulties in achieving resting membrane potential

(overestimates of voltage, red) and in matching the wave front

location exactly (underestimates of voltage, blue). However,

the assimilation of observations corrects even the most

egregious cases and reduces the error to a low value.

Nevertheless, most of the cases show small but observable

deviations from the truth throughout the 2-s simulations, as

shown in the continued presence of light red and blue regions

in the difference plots. Note that these regions are concen-

trated around the wave fronts and backs, which also are the

locations with the sharpest spatial gradients, so they are the

most sensitive to differences and the most challenging to esti-

mate accurately.

The reason for persistent differences is a phenomenon

called ensemble collapse, which we also observed in our pre-

vious work.13 Essentially, the ensemble members become

very similar, leading to a low covariance and high confi-

dence in the numerical model prediction. Thus, the LETKF

places more weight on the model prediction and less on the

observations during the assimilation steps. This situation can

arise readily because of the small ensemble, which can lead

to an underestimate of the covariance for the numerical pre-

diction. One approach for reducing the likelihood of ensem-

ble collapse is to use multiplicative inflation to artificially

increase the covariance. This strategy works well in this

case: setting multiplicative inflation to m ¼ 1:2 improves the

estimate, as can be seen in the plot in the last row of Fig. 2

as well as the black error plot in Fig. 1. Now the RMS error

approaches zero, and the difference plot does not show any

noticeable discrepancy between the estimate and the truth

after about the first 500 ms.

B. Model error: Changing a single parameter value

The case with no model error just considered provides a

proof of concept for data assimilation in cardiac models, but

in reality we would expect that the model used in the

LETKF would not describe the dynamics of the truth state

FIG. 1. An example with no model error. Here, the LETKF is run using the FK model with the BR parameterization to generate the truth and to reconstruct the

estimate from synthetic observations. No inflation is used (m ¼ 1; a ¼ 0) except where noted otherwise. The truth state (top left) shows discordant alternans

and can be compared to the estimate (bottom left). Two spatial voltage profiles taken at different times from the truth (top right) demonstrate the change in

wavelength characteristic of the discordant alternans state (profiles were shifted spatially to aid visualization); scattered points are the synthetic observations.

The RMS error drops below the level of noise in the observations, but does not go to zero for multiplicative inflation factor m ¼ 1. Setting m ¼ 1:2 improves

the estimate and results in the black RMS error plot. The randomness involved in selection of the initial ensemble leads to different estimates; the RMS error

plot includes the error values of the estimates obtained from three other simulations using m ¼ 1 in green, cyan, and blue, corresponding to the other estimates

shown in Fig. 2.
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with complete fidelity. Many factors can contribute to differ-

ences between the truth and the model, including incorrect

model parameter values, missing or inaccurate model terms,

biological variability, and errors in the approximations used

to solve the model.

We first consider a case where a single parameter value is

changed; later, we will introduce more variations. We select sd

as the parameter to modify initially because of its strong effects:

it plays the role of an excitability parameter and thus influences

the magnitude of alternans as well as the wave speed. Figure 3

shows the truth state obtained when sd ¼ 0:29. The increased

value leads to a reduction in wave speed (which can be verified

visually through comparison with the truth space-time plot in

Fig. 1) as well as a significant decrease in alternans magnitude.

The numerical prediction model used by the LETKF keeps sd

set to 0.25, which in the absence of data assimilation would

match the dynamics of the truth state in Fig. 1.

Figure 3 shows what happens in this case with no infla-

tion used (m ¼ 1; a ¼ 0). The algorithm initially can find the

correct wave front location and wavelength (top right), but

over time discrepancies grow (center right) because the algo-

rithm model parameters result in a faster wave with more

prominent alternans. The main problem early on is that the

algorithm is not fitting the resting membrane potential, but

soon the error grows again as the assimilation overestimates

the wave speed and consequently goes out of phase with the

truth. In addition, the estimate overstates the degree of alter-

nans. Thus, the RMS error grows beyond the noise level

despite a low error initially (Fig. 3, lower right).

As in the case without model error, the inclusion of mul-

tiplicative inflation is helpful in mitigating the discrepancies

between the estimate and the truth. When multiplicative

inflation is introduced by setting m ¼ 1:2, the maximum

RMS error is much lower, as shown in Fig. 4 (cyan, com-

pared with red for m ¼ 1). Increasing the multiplicative

inflation factor further can yield further reductions in error,

but eventually it can grow too large and cause the error to

increase. For the case we consider, the minimum error seems

to be reached for m � 1:6 (blue). Similar results can be

obtained when m is kept at a more modest value of 1.2 by

FIG. 2. Variability in estimates with

no model error. Although all estimates

shown are based on the truth state

shown in Fig. 1, variability due to the

random selection of states used to ini-

tialize the ensemble leads to differ-

ences in the estimate for different runs

of the LETKF. The top row shows the

same case as Fig. 1, and the next three

rows show three other reconstructions

found using the same model and algo-

rithm settings. The left column shows

space-time plots of the estimate and

the right column shows space-time

plots of the difference between the

estimate and the truth. The bottom row

shows a single case with multiplicative

inflation set to m ¼ 1:2, which

improves the estimate. The RMS error

plots for all these cases are shown (in

order from top to bottom) in red, green,

cyan, blue, and black in Fig. 1.

093911-5 LaVigne et al. Chaos 27, 093911 (2017)



introducing additive error as described in Sec. II. When

a ¼ 0:05, the error for the m ¼ 1:2 case (black) is essentially

at the minimum level achievable through multiplicative

inflation alone and is basically at the level of noise present in

the observations. Figure 5 shows space-time plots and space-

time difference plots, including errors in the unobserved

model variables, for the three cases m ¼ 1, m ¼ 1:2, and

m ¼ 1:2 with a ¼ 0:05 from Fig. 4. When m ¼ 1, the wave

propagates too quickly and produces more significant alter-

nans, leading to growing differences from the truth. Setting

m ¼ 1:2 decreases but does not eliminate differences.

Including additive inflation further improves the estimate

and decreases the difference from the truth. Note that a slight

overestimate of the voltage remains along the leading edge

of the wave (as also can be seen in the error plot for the

unobserved variable v, which is the voltage-dependent inacti-

vation gating variable regulating the fast inward current), but

regular incorporation of observations now keeps the error in

check by correcting the voltage quickly and preventing error

growth. In general, we found that using additive inflation

gave more robust results, so for the remaining cases we dis-

cuss we set a ¼ 0:05 along with m ¼ 1:2.

To obtain a broader understanding of the role of model

error in the quality of reconstructed state estimates from data

assimilation, we considered varying a single parameter over a

range of values when generating the truth state (and, correspond-

ingly, the observations used for assimilation). Specifically, we

quantified the accuracy of solutions obtained when separately

varying sd between 0.21 and 0.29 and sr between 27 and 33.66.

The parameter sr essentially sets the speed of repolarization,

with smaller values associated with a larger repolarization cur-

rent and therefore shorter action potentials and decreased alter-

nans. Figure 6 shows two different error metrics. The top row

shows the RMS error averaged over all simulation times. For

sd , the RMS error in the voltage is below the level of noise in

the observations for most of the values within the range tested,

with slightly increased values at the extremes. For sr, the error

was fairly low across the full range of values tested but was

slightly higher for lower values of sr.

We also measured the average wavelength across all times

as well as the maximum and minimum wavelengths obtained

during the second half of the 2-second simulations. For the sim-

ulations varying sd in the truth, only very slight differences can

be seen. When sr is varied in the truth, very good agreement is

seen over most of the range, with only small overestimates of

the wavelength for small values of sr when wavelengths are

short and no alternans is present. Noise present in the observa-

tions reduces the quality of the wavelength measurements using

those data; lower thresholds for wavelength measurements pre-

vent the use of lower thresholds, although such lower thresh-

olds can be used for obtaining wavelength measurements from

the truth and from the estimate.

C. Model error: Changing multiple parameter values

The model parameters we studied when varying a single

parameter have significant effects on dynamics, including

FIG. 3. Results from changing one

parameter used to generate the truth

state with no inflation. In the truth FK

model sd ¼ 0:29 and in the forecasting

FK model sd ¼ 0:25. The alternans in

the truth state is now greatly reduced

and the propagation speed of the wave

is also decreased. Initially, the estimate

and the truth align well, with the main

problem being difficulty in achieving

resting membrane potential in the esti-

mate. However, the error grows over

time (center right) because the wave in

the estimate travels faster and exhibits

more pronounced alternans. Therefore,

the RMS error grows with time despite

a low error initially (bottom right).

Wave profiles include synthetic obser-

vations as gray dots.

FIG. 4. RMS error in the model error case shown in Fig. 3. for different

inflation values. With no multiplicative or additive inflation (red), the error

grows throughout the time simulated, corresponding to the space-time plot

in Fig. 3. When multiplicative inflation is used alone, as the multiplicative

inflation factor m is increased, the RMS error after 2 s initially decreases and

then increases, with the lowest error occurring for m ¼ 1:6 (blue). Using

additive inflation can decrease error further: using m ¼ 1:2 in conjunction

with an additive inflation factor of a ¼ 0:05 (black) reduces the error by

more than a factor of 5 compared to when a ¼ 0.
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wave speed, wavelength, and degree of alternans, and our

data assimilation approach performed well under most con-

ditions. To ensure that there was no advantage in having to

overcome only a single incorrect parameter value, we next

considered cases where multiple parameter values were dif-

ferent between the truth state and the numerical prediction

model. First, we looked at changing combinations of the two

parameters we varied separately before, sd and sr: Figure 7

shows estimates obtained for truth states generated using

three different combinations of values for these two parame-

ters. The truth states showed a wide variety of dynamics. For

a case with alternans similar to what the numerical predic-

tion model would generate on its own but with faster propa-

gation (Fig. 7, top row), the estimate has slight difficulties

early in the simulation reaching resting membrane potential

and sustaining propagation, but it adapts quickly; in less than

500 ms the RMS error for all variables (including unobserved

v and w) drops below the level of noise added in generating

the observations. In another case, the truth exhibited reduced

alternans with slower propagation (Fig. 7, middle row).

Although the parameter values of the LETKF on their own

would produce faster propagation with prominent alternans,

FIG. 6. Effectiveness of the LETKF when the value of one parameter in the truth state is varied over a wide range. The parameter sd , which is set to 0.25 in

the LETKF, is varied from 0.21 to 0.29 (lower values are associated with faster propagation and more pronounced alternans; for even lower values, propaga-

tion is blocked for this ring size). The parameter sr , which is set to 33.33 in the LETKF, is varied from 27 to 33.66 (larger values are associated with increased

wavelength and more pronounced alternans; for even larger values of sr , propagation fails). The top row shows RMS error for all three variables; the mean of

the Gaussian error added when creating surrogate observations is shown for comparison. The bottom row shows the average wavelength measured across all

times using a threshold of 0.15. Lines without markers indicate the maximum and minimum values of the wavelength measured over the last second for both

the truth and the estimate. Maximum and minimum values for wavelengths calculated directly from the observations are not shown because the effects of noise

significantly degrade these measurements.

FIG. 5. Space-time plots of the state estimate and difference from the truth in the model error case from Fig. 3 with different inflation values; errors in the

unobserved variables v and w are included. The top row shows the same case as Fig. 3, with no inflation (m ¼ 1; a ¼ 0). The RMS error grows over time as

the estimated state diverges from the truth. The middle row shows an improvement when multiplicative inflation is used (m ¼ 1:2; cyan RMS plot in Fig. 4).

The bottom row shows further improvement in the estimate and a corresponding decrease in the difference from the truth with the inclusion of additive infla-

tion (a ¼ 0:05; also see the black RMS plot in Fig. 4).

093911-7 LaVigne et al. Chaos 27, 093911 (2017)



the corrections provided by the observations allow the algo-

rithm to converge to the truth with a low RMS value for all

variables within about 400 ms.

The algorithm has a more difficult time handling a third

case, which has stronger alternans combined with slower

propagation (Fig. 7, bottom row), especially with finishing

short waves on time. However, with a slight delay the

LETKF is able to recover from the short waves, which are

not supported in its model configuration, and the RMS error

in u overall oscillates around the level of noise in the obser-

vations. The RMS error for v is higher with more frequent

spikes corresponding to an inability to reset quickly follow-

ing a wave (because of the more severe alternans in the truth

caused by the elevated sr), but it does not grow over time; in

contrast, the error in w is minimal.

We also studied cases where we varied even more param-

eters, following other published parameterizations of the FK

model, as shown in Fig. 8. One parameter set (labeled “Traj”)

we used was from Ref. 6, where it was referred to as parame-

ter set 1 and was used as the basis for generating many differ-

ent spiral wave trajectories in two dimensions. In a 13.5-cm

ring, this parameter set produces waves with no alternans but

a propagation speed similar to that of the BR parameter set

used in the numerical prediction model. Although the BR

parameter set would produce alternans on its own, through

regular assimilation of observations it is able to match the

dynamics of the truth state, and RMS error in all variables

drops below the level of noise in the observations within

300 ms. We also generated a variation of the “Traj” parameter

set that produced alternans; we refer to this as the “Alt Traj”

parameter set. When the “Alt Traj” parameter set is used, the

LETKF is able to adjust well, with the average RMS error in

all variables approximately the same as the level of noise in

the observations, except for spikes coinciding with a collapse

in the wave back associated with discordant alternans in

which three wave backs are transiently present in the ring.

As another example, we developed a modification of the

guinea pig parameter set from Ref. 28 that produced alter-

nans coupled with fast wave propagation and shorter average

wavelengths. For this “Alt GP” parameter set, the data-

assimilation algorithm has a difficult time matching the

dynamics. In particular, matching the fast wave speed is

problematic. The estimate shows jagged wave fronts where

it repeatedly lags behind, and then catches up with, the truth.

An important note is that although the error is not low, it did

not grow without bound. When the parameter set is further

modified to slow propagation by doubling sd, resulting in the

“Slow Alt GP” parameter set, the LETKF is much better

able to match the dynamics, and the average value of RMS

error in u is approximately at the level of noise in the

observations.

D. Model error: Using a different model for the truth

As a more significant model error case, we also consid-

ered using another model to generate the truth state. We

chose the BR model, which generates alternans readily. In

addition, a good parameterization of the FK model to match

action potential durations over a broad range of cycle lengths

already existed, which could serve as the best case to use in

the numerical prediction algorithm. Using the BR model to

generate the truth introduced another step in generating

observations, because the FK model is “semi-normalized”

(the action potential upstroke, but not the full action poten-

tial, is scaled between 0 and 1). Thus, we shifted and

rescaled voltages from the BR model, which are in physical

units of mV, to fall between 0 and 1.6 before generating

observations for use with the LETKF.

Once the observations were generated, we found that the

data-assimilation algorithm produced an estimate that in

many ways agreed well with the truth state, as shown in the

top row of Fig. 9. Although the action potential shape is very

different for the BR model compared to the FK model even

FIG. 7. Effectiveness of the LETKF when the values of two parameters in the model used to generate the truth state are varied simultaneously to test a variety

of different dynamical states. Top row: sd ¼ 0:24 and sr ¼ 33. Middle row: sd ¼ 0:26 and sr ¼ 33. Bottom row: sd ¼ 0:26 and sr ¼ 34.
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with the BR parameter set, as can be seen in the wave profile,

the LETKF is able to match the overall wave pattern.

We also tested cases where we varied the parameter gNa

in generating the truth state; increasing (decreasing) gNa

increases (decreases) wave speed and alternans intensity.

Thus, the numerical prediction model within the LETKF no

longer was matched to the dynamics of the truth state.

Nevertheless, the estimates produced in both cases essen-

tially were as accurate as those where the numerical predic-

tion model matched the truth model more closely. For all the

cases, the RMS error values (which are calculated only for

the voltage because of the differences in the FK and BR

model formulations) remain high because of discrepancies in

the action potential shape, including the plateau height. In

comparison, the binary error in the voltage decreases to the

level of the binary error in the observations, with periodic

spikes that coincide with the times when the wavelength

transitions from long to short, which causes the wave to col-

lapse in the middle and transiently develop two additional

wave backs.

E. Model error: Spatial heterogeneity in the truth

Reconstructing states from real cardiac tissue poses

challenges beyond limitations of the model used to describe

it. In particular, cardiac tissue is not spatially homogeneous:

FIG. 8. Effectiveness of the LETKF when the values of many parameters used in generating the truth state are varied simultaneously based on previously pub-

lished parameter sets, while the algorithm continues to use the BR parameter set. Top row: “Traj” parameter set. Second row: “Alt Traj” parameter set. Third

row: “Alt GP” parameter set. Bottom row: “Slow Alt GP” parameter set. Parameter values are given in the Appendixes A and B.

FIG. 9. Effectiveness of the LETKF when a different model, in this case the Beeler-Reuter model, is used to generate the truth state. The top row shows results

from using the original model with gNa ¼ 4 and the lower rows show results obtained when gNa is set to 4.5 and 3.5, which increase and decrease the wave

speed and alternans magnitudes, respectively. Gray dots in the wave profiles indicate the synthetic observations.
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different parts of the tissue, including transmural, left-right,

apex-base, and anterior-posterior, can have different electro-

physiological properties, primarily because of differences in

ion channel expression. Although some spatial gradients

have been described,34–38 the precise details of the heteroge-

neity typically vary among experiments and may be difficult

to specify. Because data assimilation allows localized correc-

tions based on observations, we expected that it could per-

form well even in a setting with spatial heterogeneity.

We tested the LETKF for a case where the underlying

truth state had a significant spatial gradient in one parameter:

we varied ssi, which essentially scales the slow inward cur-

rent, between 28.7 and 29.3 spatially following a sinusoidal

pattern, as shown in Fig. 10. The truth state shows more pro-

nounced variations in wavelength than when ssi is set to 29

uniformly throughout the tissue (as in the truth state in

Fig. 1, for example). After an additional period of adjustment

in which resting membrane potential is difficult to achieve,

which is found even without spatial heterogeneity, the algo-

rithm is able to match the wavelength and reconstruct the

truth fairly accurately, even though it is ignorant of the

intrinsic heterogeneity in the truth state. Note that some

slight oscillations in the wave shape remain, as can be seen

in the wave profile at 1400 ms. The RMS error values fall

below the level of the noise in the observations within two

rotations of the wave around the ring and remain small for

the rest of the simulation. Thus, this preliminary result sug-

gests that data assimilation may perform well even when the

numerical prediction model does not describe spatial hetero-

geneity of the truth state.

IV. DISCUSSION

In this paper, we have considered how the data assimila-

tion algorithm we described previously works with a variety

of model error scenarios. To assess the level of error present

in the reconstructed state estimates, we used synthetic obser-

vations generated from a spatiotemporal subsampling of a

single variable of a known model-generated truth state.

While keeping the numerical prediction model used within

the LETKF algorithm unchanged, we varied the truth state

used over a broad range of dynamical conditions generated

by using the same model for prediction but with one or more

model parameters changed, by using a different model

entirely, and by introducing spatial heterogeneity. We found

that including multiplicative inflation to increase the estimate

of the ensemble covariance, which increased the uncertainty

of the numerical model prediction, was useful for allowing

the LETKF to weight the observations more heavily, thereby

preventing ensemble collapse. We also found that using

additive inflation resulted in further improvement because of

its ability to add new directions to the ensemble, which is

important when the ensemble and error subspaces differ. By

including these inflation factors, in nearly every case, the

model performed well and recovered the truth state voltage

at high spatial and temporal resolution along with the unob-

served model variables with a level of error at or below the

level of noise added to the observations.

A. Aspects of data assimilation performance with
model error

1. Acceptable range of differences in model dynamics

We tested how well a numerical prediction model tuned

to produce a discordant alternans state on its own could adapt

to very different types of dynamics in the truth state. We

found that the model could successfully match truth states

with and without alternans, stronger and weaker alternans,

longer and shorter wavelengths, and faster and slower propa-

gation speeds. The main difficulties we observed were

slightly higher error for vastly shorter wavelengths (e.g., for

FIG. 10. Effectiveness of the LETKF

in the presence of spatial heterogeneity

in the truth state in the form of a sinu-

soidal variation in ssi between 28.7 and

29.3. Very good agreement is obtained.

Gray dots in the wave profiles indicate

the synthetic observations.

093911-10 LaVigne et al. Chaos 27, 093911 (2017)



wavelengths under 3 cm when the numerical prediction

model generated oscillating wavelengths of around

4–12 cm), for large differences in wave speed (e.g., slower

by 50%), and for action potential shapes that differed signifi-

cantly between the truth and prediction model (e.g., BR

action potential vs. FK model action potential shape). For

the unobserved variables, when the wave speed is incorrect

the errors in the gating variable v can be higher than the

errors in the voltage, whereas errors in the gating variable w
typically are quite low. However, even for the most challeng-

ing conditions, data assimilation still gave reasonable results

with errors that did not grow over time. The worst case was

for the “Alt GP” parameter set (see Fig. 8), for which RMS

error was up to about 7 times higher than the observation

noise level. Still, even in this case, for which the truth state

had much faster propagation and substantially shorter wave-

lengths than the prediction model, the overall dynamics of

the estimate largely agreed with the truth—there were no

vastly different wavelengths, no wave breaks, and no long-

term growth trend in the error. Thus, even for the worst case,

many important dynamical features were captured correctly.

Overall, our main findings in this regard are (i) data

assimilation can be used successfully to produce reconstruc-

tions of truth states close to a wide variety of dynamical

states, not only dynamics close to the intrinsic dynamics of

the numerical prediction model; (ii) roughly, but not neces-

sarily exactly, matching the wave speed in the numerical pre-

diction model to the speed in the truth may be important for

obtaining more accurate estimates; (iii) roughly, but not

exactly matching the wavelengths may increase accuracy;

(iv) inflation helps to check error growth.

2. Why resting membrane potential is initially difficult
for the algorithm to achieve

A common problem experienced early in the data-

assimilation process is difficulty in reaching resting mem-

brane potential in the wake of a wave. Typically, this behav-

ior ceases within about two rotations of the wave around the

ring. The reason for the elevated membrane potential is that

at each assimilation time the state estimate from the predic-

tion model is obtained by averaging the voltages of the

ensemble members. Having even a single ensemble member

with a reasonable wave front location but a wavelength that

is too long means that, upon averaging, the membrane poten-

tial is elevated just behind the wave. Over a short period of

time, the ensemble states improve so that there is better

agreement with the location of the wave back. When this has

occurred, the membrane potential behind the wave reaches

resting potential. We found that this agreement typically

occurred within two rotations of the wave—that is, the

effects of initialization were noticeable for the first rotation,

as expected, and for one additional rotation, but largely dis-

appeared after that.

3. Effect of stochasticity in initialization of the
ensemble

Figure 2 shows several examples of reconstructed state

estimates obtained using different sets of random model

states to initialize the ensemble members. In the absence of

inflation ðm ¼ 1, a ¼ 0), as shown in the upper rows of

Fig. 2, the effects of the initialization are clear and can per-

sist. For example, in two of the case shown, there is a wave

break; for one of these cases, the break heals very quickly,

but for the other, the break lasts long enough that when the

wave becomes reestablished through assimilation of the

observations, the wave briefly is able to propagate bidirec-

tionally. Apart from these transient qualitatively different

dynamics, the magnitudes and locations of error (see Figs. 1

and 2) can vary. However, using inflation typically mitigates

these types of errors. For example, setting m ¼ 1:2 for the

same case decreases error significantly (see Figs. 1 and 2).

For all the remaining cases shown, transient wave breaks and

unchecked error growth are prevented (with the possible

exception of the case with sd ¼ 0:24, sr ¼ 33 in Fig. 7,

which shows a very short-lived wave break) when both mul-

tiplicative inflation and additive inflation are used.

4. How the use of inflation improves state estimates

We showed here that multiplicative and additive infla-

tion can help to improve the accuracy of reconstructed states.

One important role that inflation can play is to reduce the

likelihood and impact of ensemble collapse, a phenomenon

in which the ensemble members converge to nearly identical

states, so that the LETKF has a high degree of confidence in

the numerical model prediction and pays less attention to the

observations during assimilation. Because of the small num-

ber of ensemble members, the ensemble sample covariance

is often artificially low. Multiplicative inflation helps by

increasing the covariance, which leads to increased uncer-

tainty in the numerical prediction and more weight placed on

the observations when calculating an improved state esti-

mate. Using additive inflation provides additional help by

allowing perturbations to the ensemble members that are not

within the error subspace, thereby allowing the ensemble to

explore different directions not already present. This proce-

dure can allow the ensemble to span different dynamical

states, which can lead to better, typically higher, estimates of

uncertainty that again force the LETKF to weight the obser-

vations more heavily during assimilation. Overall, inflation

helps to prevent overconfidence in the numerical prediction

that arises because of agreement among a relatively small

number of ensemble members.

B. Limitations

Our findings suggest that model error may not be a sig-

nificant problem for reconstructing cardiac wave dynamics

using data assimilation, even when the dynamics of the

numerical prediction model are substantially different from

those of the truth. Of course, it is likely that the best results

will be obtained when the prediction model is calibrated to

match the wave speeds and wavelengths of the truth, but for

the broad range of cases considered here the LETKF is

robust enough to be effective even when model error is fairly

large.

A significant limitation of our work is that we have not

tested the effects of model error in two and three spatial
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dimensions in the presence of more complex dynamical states

involving one or more rotating waves. It is possible that better

model agreement will be more important for data assimilation

to work well under such conditions. We also have used the

same model for prediction in all cases; other models may

show greater sensitivity. We have considered here only a sin-

gle spatial and temporal resolution for the observations;

although we showed previously13 that using coarser spatial

and temporal resolution slightly prolonged the time required

to obtain good reconstructions, these resolutions could be

more important here. We also could find different results for

different levels of Gaussian error as well as for different spa-

tial distributions of observations. Furthermore, the results we

showed here included only a single set of parameter values for

the prediction model while varying the truth state. It is possi-

ble that some sets of parameter values allow more robust state

reconstruction than others. In addition, we tested only a single

preliminary state with spatial heterogeneity and need to do

more work studying this case before we can draw broader

conclusions regarding how successful the LETKF is for differ-

ent heterogeneity shapes, different parameter values, and dif-

ferent ranges of parameter values used over space. Finally, we

also have not tested how well the model will perform with

experimental data.

C. Future work

Our next steps involve addressing some of the limita-

tions of the present study. We intend to analyze different

spatial distributions of observations as well as more complex

two- and three-dimensional states, including spiral/scroll

wave breakup. We also plan to work with experimental data,

which will require understanding more realistic ways to rep-

resent heterogeneous, anisotropic tissue with variable shape

and thickness. Finally, we are also studying the use of

parameter estimation, including spatially varying parameters,

within the context of data assimilation.
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APPENDIX A: DATA ASSIMILATION ALGORITHM

The data assimilation algorithm we use is the Local

Ensemble Transform Kalman Filter,14 which is a nonlinear

extension to the Kalman filter. An improved state estimate,

called the analysis xa, is sought by combining the back-

ground state estimate xb with observations yo to minimize

error variance. A small number (here k ¼ 20) of ensemble

members, each denoted as xbðiÞ, is used to characterize the

background forecast covariance. At each assimilation time,

the background state estimate is found as the ensemble mean

xb ¼ 1

k

Xk

i¼1

xb ið Þ;

and the background covariance is calculated as the ensemble

sample covariance

Pb ¼ 1

k � 1

Xk

i¼1

xb ið Þ � xbð Þ xb ið Þ � xbð ÞT :

Observations are assumed to include Gaussian errors

expressed as the truth plus a Gaussian random variable �,
with associated covariance matrix R. Because the observa-

tions are sparse in space, the matrix H is used to map from

m-dimensional model space to l-dimensional observation

space, so that the observations can be expressed as yo

¼ H xtð Þ þ �, where xt is the true state.

The LETKF solves for the minimizer x of the cost

function

J xð Þ ¼ x� xbð ÞTPb�1
x� xbð Þ

þ yo � H xð Þ
� �T

R�1 yo � H xð Þ
� �

:

A closed-form solution for the minimizer, which will be the

new analysis mean (and thus the improved state estimate), is

given by

xa ¼ xb þ Xb~P
a
YbT

R�1 yo � yb
� �

;

where Xb is the m� k matrix whose ith column is xb ið Þ � xb

and Yb is the l� k matrix whose columns are the back-

ground ensemble perturbations in observation space. In addi-

tion, the analysis error covariance in ensemble space is

specified as ~P
a ¼ ½ k � 1ð ÞIþ YbT

R�1Yb��1
. The updated

ensemble members are generated by adding to the analysis

mean the perturbations given by Xa ¼ Xb ðk � 1Þ~Pa
h i1

2

:

The use of multiplicative inflation modifies the covari-

ance through inclusion of a multiplicative factor m (here it is

divided because an inverse is taken): ~P
a ¼ ½m�1 k � 1ð Þ

Iþ YbT
R�1Yb��1

. Additive inflation involves an additional

term when generating updated ensemble members: specifi-

cally, a multiple a of a vector z is added to the analysis mean

plus the perturbations. Here, z is a randomly chosen differ-

ence between states spaced 5 ms apart (the assimilation inter-

val) in the spinup.

Further information about the LETKF and our previous

application of it to cardiac electrical dynamics can be found

in Refs. 14 and 13, respectively.

APPENDIX B: NUMERICAL PREDICTION MODEL

For the numerical prediction model, we use a monodo-

main formulation of cardiac tissue with the Fenton-Karma

(FK) model. The FK model includes one differential equa-

tion for the membrane potential u and two others for the gat-

ing variables v and w

@tu t; xð Þ ¼ Dr2u� Iion u; v;wð Þ;
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@v t; xð Þ
@t

¼

� v

sþv
; u � uc

1� v

s�v1

; uc > u � uv

1� v

s�v2

; u < uv;

8>>>>>>><
>>>>>>>:

@w t; xð Þ
@t

¼
� w

sþw
; u � uc

1� w

s�w
; u < uc:

8>>><
>>>:

Periodic boundary conditions are used to form a ring, and

the diffusion coefficient D is set to 0.001 cm2/ms. The term

Iion ¼ Ifi þ Isi þ Iso is defined as the sum of the fast inward

current Ifi, the slow outward current Iso, and the slow inward

current Isi, which represent the sodium, potassium, and cal-

cium currents, respectively.

Ifi ¼ �
1� uð Þ u� ucð Þv

sd
; u � uc

0; u < uc;

8><
>:

Iso ¼

1

sr
; u � uc

u

so
; u < uc;

8>><
>>:

Isi ¼ �
w

2ssi
1þ tanh k u� usi

c

� �� �� �
:

Except where noted otherwise, we also use the FK model to

generate truth states. The variables u, v, and w are initialized

to 0, 1, and 0.7, respectively; setting w ¼ 0:7 decreases the

wavelength of the first wave generated and thereby facilitates

the development of discordant alternans within the chosen

ring size. To generate the spinup and truth state, a rotating

wave is initiated by initially setting u to 1 for the first

0.25 cm of the cable with no-flux boundary conditions; after

200 ms, the boundary conditions are switched to periodic to

allow the wave to propagate indefinitely with no further

intervention. For the numerical prediction model, the ran-

domly drawn states from the spinup are used to as initial

conditions, and only the ring geometry is used.

Table I shows the parameter values used throughout the

manuscript. Unless noted otherwise, the BR parameter set is

used.
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