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What is Chaos Theory?

• Loosely speaking, the study of dynamical systems that are sensitive to initial 
conditions.

• In mathematically rigorous terms:

– Sensitive to initial conditions

– Topologically mixing

– Dense periodic orbits

• In the words of Lorenz, “Chaos: When the present determines the future, but the 
approximate present does not approximately determine the future.”



Visual Chaotic Dynamics



What Are the Proposed Cryptographic Processes?

• Most cryptosystems are based on the Logistic Map, or variants thereof.

• In “Modified Maps for Cryptographic Application”, a modified Logistic Map is 
proposed which increases sensitivity to the initial condition and the chaotic range 
of the map, meaning an increase in the keyspace.

• In “2-Step Logistic Map Chaotic Cryptographic Using Dynamic Look-up Table,” 
an encryption scheme is proposed that uses subkeys and a dynamic lookup table.

Based on the Logistic Map:
𝑋𝑛+1 = 𝑟 ∙ 𝑋𝑛 ∙ (1 − 𝑋𝑛)



Modified Logistic Map

• 𝑋𝑛+1 = ቐ
𝑔 𝑥 = 𝑟 ∙ 𝑋𝑛 ∙ 1 − 𝑋𝑛 , 𝑋𝑛< 0.5

ℎ 𝑥 = 𝑟 ∙ 𝑋𝑛 ∙ 𝑋𝑛 − 1 +
𝑟

4
, 𝑋𝑛≥ 0.5

• This increases the chaotic range of the parameter 𝑟 to [2,4], whereas in the 
original Logistic Map, the chaotic range is [3.56995,4] (excluding islands of 
stability).

• This alteration increases the chaotic range of the logistic map fivefold times, 
increasing the potential keyspace for cryptographic protocols that implement 
this.



Cryptosystem Overview

• Currently using a 64-bit key with only one-step logistic map.

• Using a modified logistic map, as presented by “Modified Maps for 
Cryptographic Application”

• Uses a lookup table to figure out how many iterations to run logistic map before 
encrypting.



Cryptosystem
Step One: Start State Generation

• I’m currently only using a 64-bit key. In order to get a stable orbit in the logistic 
map, I need an initial value between 0 and 1.

• Assume key = 𝑘0𝑘1⋯𝑘63

෍
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63
𝑘𝑖
2𝑖+1

• This gives a start state between the values of 0 and 1.

• Note: requires 22 decimals points of precision, which is available in Python 
through the Decimal library (otherwise, Python defaults to 16 digits)



Cryptosystem
Step Two: Creation of Lookup Table

• Divide all possible values of x in the Chaotic Logistic Map (0-1) by however many 
characters you want to be able to encrypt. I chose to encrypt all ASCII characters, 
so I divide by 256.

𝜀 = 1/256

• Now associate each ASCII character with it’s associated interval. For example, A 
is 65 in ASCII, so we associate values of x in the following interval as A:

65𝜀 ≤ 𝑥 < 66ε



Cryptosystem
Step Three: Encryption

• For each character, iterate the modified logistic map until the value of x is in the 
associated 𝜀-interval for the ASCII character it’s encrypting.

• For example, encrypting ‘A’ means that we iterate the logistic map until 65ε ≤ 𝑥 <
66𝜀.

• We record the number of iterations of the logistic map as the ciphertext for that 
character.

• Moving on, we maintain the value of x as the new initial start state for encrypting 
the next character.



Cryptosystem
Step Four: Decryption

• Ciphertext is a list of integers, so using the same key, we simply iterate the 
logistic map the required number of times and look at the associated interval.

• For example, if the first encrypted character had a ciphertext output of 43, we’d 
iterate the logistic map 43 times, and then look at the value of x. We’d find which 
corresponding 𝜀-interval this corresponded to in our lookup table, and that’s our 
plaintext character.



Cryptosystem
Results

• I encrypted the introduction to my favorite book with the key 18281414996634873555. 
The text to encrypt is 35,557 characters long.

• Encryption took 8307.846 ms.

• Here is a plot of the cipher text value frequencies.

• It has a minimum value of 1, and a maximum value
of 5201.



Cryptosystem
As a Pseudorandom Number Generator

• I attempted to turn this into a pseudorandom number generator.

• My method: take the ciphertext from encryption and look at the difference 
between the subsequent values. If the second one is greater than the first, put a 1. 
If not, put a 0.

• Since this looks at the difference between encrypted characters, to get 𝑛 bits of 
pseudorandom goodness, you require 𝑛 + 1 characters to encrypt.



Cryptosystem
Testing as PRNG

• I use the NIST Statistical Test Suite to test output of the function as a PRNG.

• I test against all 15 types of tests, and all 188 variants.

• I encrypted the book introduction as before, and looked at the pseudorandom 
number stream it outputted to analyze.



Cryptosystem
PRNG Results

• It works surprisingly well.

• It passes all but two statistical tests, the runs test, and the Fourier transform test. 
(186 out of 188 is pretty good, though, right?)

• Frequency results for 10000 bit blocks:

– 4975 0’s, 5025 1’s

– 5020 0’s, 4980 1’s

– 4930 0’s, 5070 1’s

• Frequency results for 10000 bit blocks:
• 5039 0’s, 4961 1’s
• 5000 0’s, 5000 1’s
• 4981 0’s, 5019 1’s

Encrypting book introduction
Encrypting random text (took 
8074.857 ms)



Runs Test

• Tests for long runs of the same character. (0000100000000000 would fail the runs 
test, for example)

• Is this characteristic of the test? 



Fourier Transform Test

• Analyzes the periodicity of the sequence.

• Periodicity is a rigidly defined thing in chaotic dynamics. One of the three 
properties of a chaotic map is that if it has periodic orbits, they must be dense. 
Thus, we can conclude an attacker would not be able to gain anything, even if 
some periodic behavior was detected.

• Chaotic maps need not have periodic orbits at all. To pass this test, another 
chaotic map could be used instead of the logistic map to prevent periodicity.



Conclusions

• Chaotic cryptography is a new field of academic interest, and is only starting to 
be rigorously studied.

• Our proposed cryptosystem works well, although encryption is slower than 
desired for larger text.

• My proposed PRNG seems to pass NIST’s Statistical Test Suite well, with the 
exception of the runs test and the spectral test. It’s worth noting that even SHA-1, 
and BBS can fail specific tests for smaller sequences. (So failing two is actually a 
very good sign.)

• Future work should investigate expanding the key length, and using other 
chaotic maps (Lorenz System?) to remove any dense periodic orbits to pass the 
spectral test.
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